NAND Rules The World

Paul S. Wang, Sofpower.com
May 17, 2023

Digital computers are logic machines. They use bits to store information.
A bit is nothing but a switch with two states, on and off. In computer
speak, we use 1 to represent the on state, 0 the off state. In logic speak, 1 is
called true, and 0 false. Combining the two, a bit can either be in the state
on/1/true or in the state off/0/false. In other words, inside the computer 1
means true and 0 means false.

A CPU is a thumbnail-size chip containing Integrated Circuits (IC) formed
with transistors and capacitors. Modern CPUs are extremely complicated us-
ing VLSI (Very Large-Scale Integration) containing many basic units called
logic gates. A logic gate takes truth value inputs and produces truth value
outputs. Computations on truth values have simple rules specified by Boolean
algebra.

This article shall look under the hood and reveal the heart of the CPU
built with logic gates. Among the seven logic gates, NAND is the most out-
standing and, in fact, a universal building block. We shall explain in simple
and easy-to-understand terms.

This post is part of our Computational Thinking (CT) blog where you
can find many other interesting and useful articles.

Digital Electronic Circuits

Modern computers process digital signals represented by the presence (1) or
absence (0) of an electric current or voltage. Digital electronic circuits process
signals represented by 0Os and 1s, receiving input truth values, performing
logic operations on them, then producing output truth values. CPU registers
hold input signals as well as store output signals.

https://computize.org/ctblog

Treating 1 as true and 0 as false, the basic logical operations on the input
truth values, A and B, are as follows.

o (A AND B) is true only when A and B are both true.
o (A OR B) is true if at least one of A and B is true.

o (NOT A) is true if A is false and is false if A is true.

e (A XOR B) is true if only one of A and B is true.

o (A NAND B) is false only when both A and B are true.
o (A NOR B) is false if at least one of A and B is true.

o (A XNOR B) is false if only one of A and B is true.

We see seven logic operators listed. The complete behavior of each logic
operator can be described by a truth table specifying the output for all pos-
sible input values.

Table 1: Truth Tables

A B|AAND B|AOR B|A XOR B
0 0 0 0 0
0 1 0 1 1
1 0 0 1 1
1 1 1 1 0

Table 7?7 shows the truth tables for AND, OR, and XOR. Try it yourself and
write down the truth tables for the other logical operators.

Here is an advise to computational thinkers: Be careful about the precise
meaning of “and”, “or”, “not”, and “nor”. Their meaning as logic operators
may not be the same as in day-to-day usage. Guard against their imprecise
use when receiving communication from others. Better be careful than sorry.

For example, the menu in a restaurant may state “mashed potatoes,
French fries, or steamed broccoli”. It usually means you can choose only
one. Whereas, the job requirement “a Bachelor or Master degree” means
either or both.

Logic Gates

A gateis a basic building block in integrated circuits constructed with CMOS
(Complementary Metal-Oxide—Semiconductor) or similar technologies. A
logic gate implements one of the basic logic operations as we have just de-
scribed. A logic gate takes one or two inputs and produces a single output.
The seven basic gates are as follows. Each gate, except the NOT gate, takes
two inputs.

e AND gate—Outputs 1 only if both inputs are 1. Otherwise outputs 0.
e OR gate—Outputs 0 only if both inputs are 0. Otherwise outputs 1.
o NOT gate—Outputs the opposite of the input.

« XOR (exclusive OR) gate—Outputs 1 only if the two inputs are different.
Otherwise outputs 0.

o NAND, NOR, or XNOR gate—Outputs the opposite of the corresponding
AND, OR, or XOR gate.

Standardized graphical symbols can be used to design simple digital cir-
cuits (Figure ?7). Note that a little circle at the tip of a gate indicates an

D D D

Figure 1: Distinctive Gate Symbols

inversion, turning a 1 to 0 and a 0 to 1.

More complicated digital circuits are built by wiring together these logic
gates. Pulse signals, typically produced by a crystal oscillator, provide a
processing rhythm. The next processing step won’ t start until a new clock
pulse arrives. The pulse interval is needed for all digital signal transitions to
complete and the circuit components to settle into their new states. Typical
clock rates for modern CPUs are in the GHz range.

Building CPUs with Logic Gates

Computations in a CPU are done with clever combinations of logic gates.
We can get a taste of this by looking at simple arithmetic operations such
as adding two binary numbers. For example, adding 011 (the number three)
to 001 (the number one) must result in 100 (the number four). A quick Web
search will land you more information on binary numbers.

Half Adder

An adder circuit provides the ability to add binary numbers which in turn
can be used repeatedly to perform multiplication of binary numbers. But
first, we will build a half adder. A half adder takes two input bits A and B
and outputs a sum bit S and a carry bit C (carry to the next bit position)
(Figure ??7). Here we used an XOR gate to produce the sum bit and an AND

— _)‘D— < {zum bit)
A
B D— C (carry bit)

Figure 2: A Half Adder

gate to compute the carry bit. Table 2 lists the input and output values for
the half adder. The half adder shows how logic gates are used to add two

Table 2: Half Adder 1/0

A B|S C
0O 0] 0 O
O 141 O
1 01 O
1 1}]0 1

bits.

Full Adder

The half adder can be used to build a more capable full adder that can take
three input bits A, B, and Cj, (carry in from the previous bit position) and
will produce a sum bit S,,; and a carry bit C,,;. A full adder consists two
half adders and an extra OR gate (Figure 77?).

r c.i.n

B—™ _lc

Figure 3: A Full Adder

The Bottom-Up Approach

Building simple components first then combine them into more complicated
components is a solution method that often works well. This leads to the

CT concept—bottom-up solution: Consider the bottom-up
approach for problem solving. Start by solving the small and
most basic problems. Then combine those solutions to solve bigger
problems.

The toy LEGO™ is a vivid illustration of the bottom-up approach—using
tiny blocks to build anything you can imagine.

Here, we first built a half adder. Then we combine two half adders to
build a full adder. Then we can combine a number of full adders to solve the
more complicated problem of adding two n-bit numbers.

NAND Is A Universal Gate

A logic gate is universal if it alone can be used to build all other logic gates.
The NAND and NOR gates are both universal. Because NAND and NOR gates are

economical and easier to fabricate, they are the basic gates used in all 1C
(integrated circuit) digital logic families. For many reasons, the NAND gate is
used in most CPU designs.

To give you an idea, here is how NAND can be used to build an OR gate
(Figure ??). The input A is fed as the two inputs to the first NAND gate

=D
o nonn

B |

Figure 4: An OR Gate Using NAND Gates

and similarly B to the second NAND gate. The third NAND gate produces the
correct output for A OR B. It may be interesting for the reader to verify that
this implementation works for all possible values of A and B.

The take away here is: modern CPUs use NAND to implement logic gates
that in turn can build all other functions.

One Good Turn Deserves Another

Feedback Loop

Computer hardware design is a complicated engineering activity. Software
tools are used to help automate various phases of the design, testing, syn-
thesis, and fabrication of integrated circuits. Better hardware leads to faster
software which leads to even better hardware, a wonderful virtuous cycle
indeed (Figure ??). Take advantage of new knowledge, new tools, new cir-
cumstances and apply them everywhere possible. Don’t miss the chance to
create a positive feedback loop!

Iteration

A more general concept is iteration—repeated application of the same proce-
dure. The power of iteration cannot be overstated. Let’s revisit our favorite
example.

Faster Machine

Better Design

Figure 5: A Virtuous Cycle

Iteration has led to the invention of the polymerase chain reaction (PCR),
a technique in molecular biology to generate thousands to millions of copies
of a particular DNA sequence.

Developed by Dr. Kary Mullis in 1983, PCR is now indispensable in med-
ical and biological research and applications, including DNA testing and ge-
netic fingerprinting. The impact of automated PCR is huge and far-reaching.
Mullis was awarded the 1993 Nobel Prize in Chemistry for his part in the
invention of PCR.

In recounting his invention, Kary Mullis wrote in his book Dancing Naked
in the Mind Field:

I knew computer programming, and from that I understood the
power of a reiterative mathematical procedure. That’s where you
apply some process to a starting number to obtain a new number,
and then you apply the same process to the new number, and
so on. If the process is multiplication by two, then the result of
many cycles is an exponential increase in the value of the original
number: 2 becomes 4 becomes 8 becomes 16 becomes 32 and so
on.

If I could arrange for a short synthetic piece of DNA to find a
particular sequence and then start a process whereby that sequence
would reproduce itself over and over, then I would be close to
solving my problem.

At the time of the invention, the “polymerase” and other related DNA du-
plication techniques were already known. It was the “chain reaction” part
that was missing. Well, we have Dr. Mullis and his computational think-
ing to thank for the invention. And what a significant invention! The New

7

York Times described it as “highly original and significant, virtually dividing
biology into the two epochs of before P.C.R. and after P.C.R.”

Duplicating DNA sequences is key to modern use of DNA technologies.
For instance, COVID-19 virus tests depend on PCR.

Finally

Looking under the hood of a modern CPU, we found tens of billions of
transistors forming logic gates (mostly NAND) that perform computations at
lightening speed. All this is made possible by using computer software to
design next generation CPUs—a virtuous cycle that is still on-going.

Now, imagine a computer running to perform any task such as playing
a video game or navigating a map. It all comes down to a dizzying blur of
numerous NAND operations in the CPU! And the task is done. Isn’t this a

Figure 6: NAND Rules the World

concrete example of the power of the bottom-up problem solving method—
combining NAND gates to do almost anything? Thus, in a real sense, NAND
Rules The World (Figure ??). How mysteriously wonderful.

Bonus: N-Bit Adder

For motivated readers, here is a bonus: how full adders are combined to
add two n-bit binary numbers (unsigned or two’s complement). Basically,
we combine n full adders, each taking its Cin from the Cout of the adder
to its right. Here we see how this works for input X (X, X,_1...Xy) and Y
(Y, Y,—1...Yy) producing a result S (S,S,-1...50) (Figure ?7). Because the

5 5 5

Figure 7: N-Bit Adder

carry bit may need to propagate from the rightmost adder all the way to the
leftmost, a delay proportional to n is needed until the last output bit settles
down. Such an adder is known as a ripple adder. More complicated adders
can reduce the delay and make binary addition faster, especially if addition
is performed as a subprocess of multiplication.

